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Fig. 1. Our seam-aware decimation allows seamless texture reuse at all decimation levels (here, approximately 1%). Seams on the original model are shown in

purple. Parameterizations are shown inset. Garland and Heckbert [1998] (implemented by MeshLab [Cignoni et al. 2008]) do not preserve seams precisely,

leading to artifacts in the texture. Red areas near seams in the inset parameterization indicate this deviation in the parametric domain. Maya [2017] prevents

decimation of seams entirely, leading to suboptimal allocation of mesh vertices.

A parameterization decouples the resolution of a signal on a surface from

the resolution of the surface geometry. In practice, parameterized signals

are conveniently and efficiently stored as texture images. Unfortunately,

seams are inevitable when parametrizing most surfaces. Their visual artifacts

are well known for color signals, but become even more egregious when

geometry or displacement signals are used: cracks or gaps may appear in

the surface. To make matters worse, parameterizations and their seams

are frequently ignored during mesh processing. Carefully accounting for

seams in one phase may be nullified by the next. The existing literature on

seam-elimination requires non-standard rendering algorithms or else overly

restricts the parameterization and signal.

We present seam-aware mesh processing techniques. For a given fixed

mesh, we analytically characterize the space of seam-free textures as the

null space of a linear operator. Assuming seam-free textures, we describe

topological and geometric conditions for seam-free edge-collapse opera-

tions. Our algorithms eliminate seam artifacts in parameterized signals

and decimate a mesh—including its seams—while preserving its parame-

terization and seam-free appearance. This allows the artifact-free display

of surface signals—color, normals, positions, displacements, linear blend

skinning weights—with the standard GPU rendering pipeline. In particular,

our techniques enable crack-free use of the tessellation stage of modern
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1 INTRODUCTION

A 3D surface’s parametrization by two coordinates naturally affords

defining functions or signals that map points on the surface to scalar

or vector values. In practice, a triangle mesh parameterized into the

unit square can define a high-resolution signal (e.g., color values) at

points on its 3D surface by reading the pixel values of an image at

corresponding parametrization coordinates. Parameterization not

only decouples the triangle mesh resolution from the signal image

resolution, but also provides a bridge between levels of detail approx-

imating the same underlying surface (see Figure 1). If two different

resolution meshes of the same surface agree on a parameterization

to the plane, then a signal designed for one mesh is readily defined

upon other.

To parameterize most interesting 3D surfaces, it is necessary

to make cuts to avoid foldovers or high distortion. The cuts are

discontinuities in the parameterization. They unnecessarily create

discontinuities in the surface signal. The seams where cuts meet on

the 3D surface cause well known visual artifacts for color signals.
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Indeed, 3D modeling professionals will attempt to hide seams along

sharp signal features or in low-visibility regions. Seam artifacts are

especially noticeable for geometric signals, where discontinuities

produce cracks, gaps, or self-intersections in the 3D surface (see

Figure 2).

Seam-related difficulties limit the use of geometric signals. Mean-

while, many (if notmost) mesh processing techniques do not account

for or track a mesh’s parameterization much less its parametric

seams. Due to this vicious cycle, downstream phases typically do

not reap the potential benefits of parametrized geometric signals.

We propose a virtuous circle: a suite of seam-aware mesh process-

ing techniques. Our suite of algorithms decouple mesh resolution

from the complexity of the surface’s signals. Our contributions,
each of which can be used independently, are:

• Seam erasure (Section 4), an algorithm to analytically define

the space of seam-free textures for a given parameterized

mesh. This space is always the non-empty null space of a

linear operator. We apply this as a constraint to erase seams

from existing textures by solving a sparse, linear system of

equations. We do not modify the parameterization or mesh

to obtain a seamless textures.

• Seam-aware decimation (Section 5): We describe the space

of seam-free edge collapse operations, including seam deci-

mation criteria and optimization placement constraints. Our

mesh decimation allows the same texture to be used across

all decimation levels—notably along seams.

• Seam straightening (Section 6): The seam edge collapse cri-

teria may be violated often for a given mesh, preventing sig-

nificant decimation along the seams. We describe a one-time

preprocessing algorithm to modify a mesh’s parameterization

to “straighten seams,” allowing many more seam edges to be

collapsed.

The combination of these contributions enables (i) a generalization
of geometry images to dynamic, deforming shapes (ii) that runs on

the standard, hardware-supported graphics pipeline (iii) without

auxiliary data structures, non-standard sampling, or taking full

control of the parameterization.

We demonstrate our seam erasure on a variety of surface signals:

color, normals, ambient occlusion maps, geometry, and skinning

weights. We apply our mesh decimater to generate level-of-detail

meshes, all of which can re-use the same seam-free surface signals.

We further leverage this decoupling of surface signal from mesh

resolution with straightforward, crack-free subdivision in the tessel-

lation stage of modern GPU’s. We show, for the first time, adaptively

deforming surfaces with skinning weight maps. Weight maps allow

artists to 3D paint skin weights at a high resolution decoupled from

the mesh.

2 RELATED WORK

Our contributions involve rendering, mesh decimation, and texture

mapping, topics nearly as old as computer graphics.

Textures. Texture memory on the GPU has been exploited far

beyond its original use for storing sampled color information. We

briefly review methods storing geometric information in a texture

map. The most common geometric information stored in texture

Garland and Heckbert [1998] Our approach

Fig. 2. When the parameterized signal encodes geometry, discontinuities

manifest as cracks due to out of range sampling (the red areas in Figure 1,

inset). Garland and Heckbert’s approach exhibits cracks, because their

decimation does not operate in the space of seam-free edge collapses. In

contrast, our seam-aware decimation prevents such discontinuities.

memory is a normal map or displacement map. Displacement map-

ping is well-established technique in computer graphics [Blinn 1978;

Cook 1984]. While displacement mapping is widely used, especially

for subdivision and parametric surfaces in non-real-time settings

[Guskov et al. 2000; Lee et al. 2000], it has been less widely used

(apart from normals) in real-time rendering scenarios due to GPU

limitations. Recently, however, geometry and tessellation shaders

have enabled dynamic geometry generation on the GPU, leading to

a surge of interest in the literature [Jang and Han 2012; Loop et al.

2009; Nießner et al. 2016; Nießner and Loop 2013; Schäfer et al. 2012;

Szirmay-Kalos and Umenhoffer 2008; Tatarchuk et al. 2010]. One

can also store the mesh’s geometric immersion by writing the coor-

dinate functions into the texture as in Geometry Images [Gu et al.

2002]. All of these works spend considerable effort to eliminate seam

artifacts by construction, such as constraining the parameterization

to one or more regular rectilinear patches and adding auxiliary data

structures. Our seam erasure (Section 4) eliminates seam artifacts

with an offline preprocess that projects a texture into the space of

seam-free textures; no changes are needed at render-time. Moreover,

creating a high-quality displacement map to turn a coarse mesh

into an existing high-resolution one can be challenging without a

bijection [Nießner et al. 2016]. Ray casting along the normal direc-

tion and closest point sampling have common failure modes. Cohen

et al. [1998] show that decimation can be used to create a natural

bijection via the parametric domain, enabling the generation of

perfect vector-valued displacements away from seams. In Section 5,

we present conditions for decimation algorithms to prevent seam

discontinuities. Our algorithms allow for a generalization of Ge-

ometry Images supporting arbitrary (bijective) parameterizations,

enabling more natural and lower distortion parameterizations and

eliminating the need for special seam handling in the output.

Seams. Many attempts have been made to tackle the problem

of seams, or texturing discontinuities that arise when parameteriz-

ing non-disk-like surfaces. Most previous approaches either mod-

ify the rendering pipeline (altering sampling [Toth 2013] or blend-

ing multiple textures [Piponi and Borshukov 2000]), take complete
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control of the parameterization (generating rectangular patches

or seams which are 90
◦
rotations and integer offsets) [Aigerman

et al. 2015; Bright et al. 2017; Kovalsky et al. 2016; Myles and Zorin

2013; Nießner and Loop 2013; Purnomo et al. 2004; Ray et al. 2010;

Sheffer and Hart 2002], or avoid parameterizations entirely [Loop

et al. 2009; Yuksel et al. 2010]. Our work is orthogonal to the choice

of the original parameterization and stands to make this family of

work more useful. A seamless parameterization does not provide

seamless texture values or collapsible seams. A surface signal is

undefined in texels outside the parameterization. Practical consid-

erations, such as designer-specified adaptive resolution or seam

layout, manifold mesh or genus restrictions, simulation-quality el-

ement requirements, and performance limitations, often preclude

the use of global parameterization techniques in many workflows.

A seamless parameterization’s integer offsets are also insufficient

when multiple texture resolutions are used for the same model or

the texture resolution is chosen later. The closest approach to ours

was developed in industry and briefly described by Iwanicki [2013],

who also optimize texture values; they penalize discontinuity at

finite sample points along seams and L2 deviation from the input

texture. We share the motivation to operate on existing parameteri-

zations and leave the rendering pipeline unchanged (pay no runtime

cost). In our experiments, their solutions exhibit non-smoothness

and artifacts near corners (see Figure 7). In contrast, we provide

a closed form expression for the space of seam-free textures and

impose its zero-energy null space as a linear constraint to com-

pletely eliminate seam artifacts while minimizing value change and

non-smoothness. Our solution allows for a global, gradient domain

term. This is important because artists often create textures with

a global mismatch across seams. Our energy has as a special case

the “constant value” seam corner handling of Nießner et al. [2013]

or the equivalence classes of Ray et al. [2010]. Setting texels along

the seam to be rotated or reflected copies of each other requires

specially generated parameterizations; we show that this is more

strict than necessary.

Decimation. Previous works on mesh decimation either fix all

seam edges, introduce seam discontinuities by allowing adjacent

straight seam edges to collapse, or do not preserve the uv-space

boundary at all. The seminal Quadric Error Metrics approach of

Garland and Heckbert [1997], often referred to as QSlim, serves

as a widely used de facto benchmark but does not handle surface

attributes other than 3D position. A follow-up work considers multi-

dimensional surface attributes in the same quadric metric frame-

work [Garland and Heckbert 1998]. Hoppe [1999] proposed several

quality and efficiency improvements to this quadric metric and mod-

ifications to handle attribute discontinuities such as sharp normals.

While these works put mesh decimation and multi-dimensional

surface attributes on very solid theoretical footing, Garland and

Heckbert do not address the issue of bijectivity or directly address

discontinuities. Indeed, implementations of Garland and Heckbert

in practice [Cignoni et al. 2008] do not preserve seams or bijectivity,

important conditions for texture reuse. Hoppe fixes the geometry

of attribute discontinuities such as seams completely. In contempo-

rary work, Cohen et al. [1997; 1998] develop bijectivity conditions

and a parameterization-preserving decimation algorithm; they as-

sume rectangular parametric boundaries and either fix all paramet-

ric boundaries or allow any collinear edges to collapse. Allowing

collinear seam edges to collapse while maintaining collinearity may

still introduce seam artifacts (Section 5, Figure 8). Also contempora-

neously, Lee et al. [1998] obtain a bijection between coarse and fine

surfaces, though without UV parameterization. Sander et al. [2002;

2001] introduced techniques for making effective use of texture

resolution and sharing the same texture among all levels of detail;

they do not address seams. We are similarly motivated to store

high resolution surface signals in textures in a manner decoupled

from mesh resolution. Our contribution is decimation criteria and

constraints (Section 5) for collapsing seam edges while preserving

seamless texture mappings. Our criteria and constraints are agnostic

to the decimation approach. In Section 6, we describe an approach

to adjust a parameterization to increase the number of seam edges

that can be decimated.

Complementing to these methods, previous works have consid-

ered optimal decimations of an input mesh given knowledge of its

probable deformations. Mohr and Gleicher consider a static simpli-

fication of a mesh given frames of an animation sequence [2003].

Huang et al. extend this to a simplification with dynamically chang-

ing topology [2006]. These approaches could be added as edge costs

to our approach.

Adaptive meshing. Dynamically deforming meshes found in com-

puter animation immediately invite adaptivity. In the simplest form,

instead of defining the space deformation with displacements of

regularly sampled lattice points (cf. Eulerian simulation), the grid

adapts spatially to the complexity of the deformation (e.g. via octree

subdivision [Botsch et al. 2007]). Instead, our use of the tessellation

shader better utilizes existing real-time graphics hardware.

We postulate that cracks along seams like those in Figure 2 are an

important reason that the tessellation shader is used infrequently in

video game graphics engines. The tessellation shader in the OpenGL

pipeline activates after the vertex shader for each (triangle) primitive.

The shader can control the over-tessellation (subdividision) of the tri-

angle and move resulting vertices before rasterization and fragment

shading. This has been exploited in the past for view-dependent

subdivision of coarse meshes into smooth surfaces [Boubekeur

and Alexa 2008] or approximations of subdivision limit surfaces

[Boubekeur 2010]. For example, approximating a subdivision limit

surface via the tessellation shader provides a simple way to create

high-resolution deformations: move the control mesh on the CPU

or with the vertex shader (e.g., with traditional skinning) and then

subdivide the deformed control cage within the tessellation shader

[Holländer and Boubekeur 2010; Nießner et al. 2012]. However, the

deformation is limited by the resolution of the skinning weights

defined at control cage vertices. Moreover, deforming a subdivision

cage with skinning and then subdividing to produce the smooth

(approximate) limit surface can deviate arbitrarily from applying

skinning as a pointwise deformation to the rest pose limit surface

[Liu et al. 2014]. Liu et al. propose an optimization of the deforming

control cage vertices so that their limit surface follows the point-

wise skinning rest-pose limit surface. We do not assume a particular

subdivision paradigm and treat the input mesh after displacement
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offsets have been applied or geometry image as the underlying sur-

face to be deformed pointwise. When deforming, our tessellation

shader subdivides incoming triangles based on the deviation of their

linearly deforming surface from their ideal pointwise skinning (non-

linearly deforming) surface, allowing flat triangles in the rest pose

to curve and bend in space (Figure 18).

3 SEAMS

Seam edges in a triangulated 3D surface mesh are edges whose

incident “face flaps” become combinatorially disconnected along

the edge in the u,v parameterization, typically to different geometric

locations (Figure 3). From the point of view of the 3D surface mesh,

seams are edges that have been “cut” and correspond to multiple

edges on the parametric domain (two for manifolds). From the point

of view of the 2D parametrized mesh in uv space, seams are edges

glued together in the 3D surface mesh.

Bilinear reconstruction is the standard technique (implemented in

GPU hardware) for reconstructing a signal at any parametric point

uv in a texture. Viewing the texture samples or texels as lying at the
intersections of grid lines, it is defined as the bilinear interpolation

of the four corners p00,p10,p01,p11 of the grid cell in which uv lies

(Figure 3, left):

p00 + t(p01 − p00) + s(p10 − p00) + st(p00 − p10 − p01 + p11) (1)

where s, t ∈ [0, 1] are the coordinates of uv within the grid cell.

For interior points far from seams, the bilinear reconstruction

is unambiguous and continuous. Along a seam edge, however, the

bilinear reconstruction will sample different texels depending upon

which incident faces are used for the parametrization. When the two

reconstructions do not match, the seam is visible as a discontinuity

(Figures 4 and 5). This discontinuity manifests as cracks when the

signal encodes geometry (e.g., geometry images or displacement

maps, see Figure 2).

Let us formalize seams and their associated issues. For every man-

ifold edge on the surface mesh e , there are two functions e1(γ ) and

u
v

x
y

z

ed
f

d2

e2

f2

p’00 p’10

p’01 p’11

d1

e1

f1
p00 p10

p01 p11

s
t e1(γ)

Fig. 3. A seam edge e on the 3D surface mesh corresponds to two half-edges

e1 and e2 in the u, v parameterization. Similarly, for other edges d, f . We

use boldface e1(γ ) to refer to the vector-valued function mapping a relative

1D position along on the edge to its half-edge positions along e1 in u, v
space. The half-edges e1 and e2 will pass through (possibly different) texels

where signals stored at corners (p00, p01, etc.) are bilinearly interpolated.

e2(γ ) mapping a parameter γ ∈ [0, 1] along the edge to uv coor-

dinates by linearly interpolating texture coordinates stored at the

half-edge endpoints (also known as wedges). See Figure 3. For non-
seam edges, e1 = e2. For seam edges, these functions will in general

disagree as they map seam half-edge e1 and e2 to different locations
in the uv parameterization. Each half-edge ei may pass through

multiple texel-grid cells. In each grid cell, bilinear interpolation can

be expressed as a function that is quadratic in γ and linear in the

four relevant nodal values pkl :

B(ei (γ ), p) = γ 2ai (γ )T p + γbi (γ )T p + ci (γ )T p, (2)

where p is the (column) vector of the four samples and ai (γ ), bi (γ ), ci (γ )
are (column) vectors whose entries are constant functions of γ when

restricted to this grid cell; these functions map the uv endpoints

e(0) and e(1) to the appropriate cell s, t values in Equation 1. Equiv-

alently, we choose to think of p in Equation 2 as the (column) vec-

tor of all samples in the texture and ai (γ ), bi (γ ), ci (γ ) as sparse,
piecewise-constant (column) vectors with four non-zero elements

(at the relevant indices in p). In this view, B is piecewise quadratic;

it is quadratic in each interval for which ei (γ ) lies within a single

grid cell.

Seam artifacts occur when bilinear interpolation along the half

edges of an edge (a seam edge) produce different values. We can

measure the total discontinuity along a seam edge as

D(e1, e2) =
∫

1

0

|B(e1(γ ), p) − B(e2(γ ), p)|2 dγ . (3)

We can express D in matrix form as

D(e1, e2) = pT
(∫

1

0

m(γ )Tm(γ )dγ

)
p (4)

where m(γ ) = γ 2(a1 − a2) + γ (b1 − b2) + (c1 − c2).
To analytically evaluate the definite integral, we find the sorted

parameters γi ...k = {0, . . . , 1} where e1(γ ) or e2(γ ) cross a grid cell

boundary. We break up the integration to obtain

D(e1, e2) (5)

= pT
(k−1∑
i=1

∫ γi+1

γi
m(γ )Tm(γ )dγ

)
p (6)

= pT
(k−1∑
i=1

Mi

)
p (7)

= pTMe1,e2p, (8)

where eachMi is a sum of constant matrices scaled by monomials

of γ ,
∫ γi+1
γi

γ idγ , for i = 1, 2, 3, 4. These integrals have trivial closed

form solutions, and so we obtain an analytic, closed form expression

for D, the seam discontinuity. Importantly, D is quadratic in the

texels p.
The following two sections answer the following two questions.

For a given fixed mesh, what is the space of seam-free textures

(Section 4)? Assuming seam-free textures, what is the space of seam-

free mesh decimations (Section 5)?
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4 TEXTURE SEAM ERASURE

For a given mesh, we can express the space of seam-free textures as

those for which integrated seam discontinuity in Equation 5 over

all seam-edges is zero:

Dtotal =
∑

e1,e2∈seams

D(e1, e2) = pT
(∑

e1,e2∈seams

Me1,e2
)
p = pTM p.

Our texture seam erasure eliminates seams by adjusting texel values

p. The space of seam-free textures is the null space of M . This is

because Dtotal = 0 if and only ifM p = 0.
1
ComputingM depends

only on the parameterization of the mesh seams and the resolution

of the texture.

This null space is guaranteed to be infinite; in particular, it con-

tains all constant vectors. In our results, the curves we observe

along seam edges are quite complex. Empirically, the null-space

dimensionality (for pixels in bilinear cells the seam passes through)

ranges from the hundreds to the thousands, or approximately 6–30%

of the total dimensionality (number of seam pixels). For example,

Hercules in a 512 × 512 texture has a 7130 pixel seam and nullity

586, where nullity is the number of seam pixels minus the rank of

M .
2
The Lemon in a 512 × 512 texture has 4053 seam pixels and

nullity 1183. The Teapot in a 256 × 256, 512 × 512, and 1024 × 1024

texture has 5274, 10641, and 21345 pixels along its seam and nullity

347, 959, and 2308, respectively. The Cow in a 512 × 512 texture

has 8101 seam pixels and nullity 657. The null space contains so-

lutions previously proposed in the literature (equivalence classes

[Ray et al. 2010], 90
◦
rotations [Aigerman et al. 2015; Myles and

Zorin 2013], and translations [Nießner and Loop 2013]) as special

cases. Bilinear interpolation defines a particular bivariate quadratic

function in each grid cell. Each termMi in Equation 7 only considers

values along lines, so the constraint that ties seam halfedges to each

other imposes a particular shared univariate quadratic function.

h1p00 p10

p01 p11

p20 p30

p21 p31

g1

e1

f1
h2

g2

e2

f2

As the texture resolution decreases, more

and more vertices of a seam may lie within

a single bilinear cell. When a chain of four

edges (separated by three vertices) lies in

general position within a single cell (inset

left), the null space locally reduces to a single dimension, constant

functions. With chains of one, two, and three edges, the null space

locally has five, three, and two dimensions, respectively. See Fig-

ures 6 and 17 for more complex examples with very low texture

resolution.

In practice, because we imposeM p = 0 with a penalty method,

we normalize M to avoid having to adjust weights for different

length seams or texture sizes. To do so, we use

Mtotal =
1

L

∑
e1,e2∈seams

leMe1,e2 . (9)

where, for normalization, le is the 3D edge length of e and L is the

sum of all such edge lengths. This does not affect the null space.

1
It is obvious that Dtotal = 0 if M p = 0. In the other direction, since M is positive

semi-definite, there exists an A such that M = ATA. Hence, Dtotal = pTM p =
pTATAp = |Ap |2 = 0 implies that M p = ATAp = 0.

2
We compute the rank via NumPy’s matrix_rank() function, which employs a widely

used singular value threshold.

Dtotal

Example Mode Texture Size Channels Seam Edges Before After Runtime

Animal (Diffuse) local 640 × 640 4 835 0.009 1 · 10−10 33

Chimp (Diffuse) local 640 × 640 3 1122 0.003 4 · 10−11 25

Cow (Displacement Map) local 1024 × 1024 3 2441 3.744 5 · 10−8 65

Cow (Normal Map) global 2048 × 2048 3 2441 0.078 1 · 10−10 227

Cow (Weight Map) local 1024 × 1024 15 2441 0.072 1 · 10−11 71

Boy (Diffuse) local 1024 × 1024 4 4802 0.056 2 · 10−09 234

Hercules (Ambient Occlusion) local 256 × 256 4 1098 0.056 6 · 10−09 31

Lemon (Diffuse) local 2048 × 2048 3 98 0.0003 2 · 10−07 431

Lemon (Normal Map) global 2048 × 2048 3 98 0.031 2 · 10−07 408

Teapot (Ceramic) local 992 × 992 3 954 0.056 8 · 10−10 56

Teapot (Ceramic) global 992 × 992 3 954 0.056 7 · 10−11 56

Wolf (Weight Map) local 1024 × 1024 20 653 0.068 1 · 10−11 58

Table 1. Performance information for our seam erasure. Runtime is mea-

sured in seconds. Please see the text for details.

4.1 Choosing a solution

To choose a solution from the null space, we balance energy terms

measuring the deviation from the input texture and smoothness

across the seam. We briefly note that minimizing the deviation of

interior texels (Echange below) subject to the null space constraint
results in an under-constrained system.

Deviation. Given an input texture, we consider texels in the in-

terior of the parameterization to be reliable. Texels outside the pa-

rameterization are, in general, completely unreliable. For example,

a texture obtained by rasterizing surface data into the uv mesh will

record no values outside. However, we also account for scenarios

with additional information: surface data may be stored on mesh

vertices (e.g. 3D painting or finite element solution), and therefore its

linear interpolation along seam edges is known; artists may create

the texture in 2D and deliberately set outside texels near the seam.

Finally, note that not all uv mesh edges bordering outside texels (we

call these uv silhouette edges) are seam edges; 3D surface boundary

edges and uv-space foldovers are also uv silhouette edges. They can

produce artifacts, since the signal along such edges will be bilin-

early reconstructed using texels inside and outside the uv mesh. For

example, in Figure 3, the circles in the parameterization are spheres

mapped to themselves as discs. We consider all uv silhouette edges

to be “seams” for our decimation (Section 5).

We express the reliability of interior texels (denoted as the set

Tin) in the primary and gradient domains. We add a primary domain

term,

Echange(p) =
1

|Tin |

∑
i ∈Tin

∥p[i] − p0[i]∥2 ,

where p0 are the initial texel values. We add a gradient domain term

to allow for global effects resulting from enforcing seam continuity.

For example, color or normal maps designed in 2D often have unin-

tended non-local changes across seams. The gradient domain term

we add is

E∇in(p) = ∥∇inp − ∇inp0∥2,

where ∇in is the discretized 2D gradient operator restricted to inte-

rior texels Tin. We allow users to choose the balance between the

primary and gradient domain terms as appropriate. In practice, we

offer two parameter settings, given below.

When given additional information by the user, either linearly

interpolated values along seam edges or reliable texels outside the
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Fig. 4. Our texture seam erasure eliminates seam discontinuities from tex-

tures encoding any signal (colors, normals, geometry, ambient occlusion).

Backfaces, visible through cracks in the input geometry image example, are

rendered in red. Normal maps and the cow color map’s seams were erased

using the global settings (Section 4).

Before After (local) After (global)

Fig. 5. Seam erasure can remove the discontinuity resulting from mis-

matched bilinear interpolation, but global discontinuities in the signal may

remain. This typically occurs when textures are painted directly in the para-

metric domain. Seam erasure in the gradient domain has a more global

effect.

seam, we add an appropriate term to the energy. For linearly interpo-

lated values x0 and x1 along an edge e , we minimize the integrated

squared deviation of the seam from the linear interpolated function,

Elerp(ei ,x0,x1) =
∫

1

0

|B(ei (γ ), p) − (γx0 + (1 − γ )x1)|
2
dγ .

For all edges,Elerp(p) = 1

L
∑
ei ,x0,x1∈silhouettes leElerp(ei ,x0,x1).When

texels outside the seam are considered reliable, we minimize the

integrated squared deviation of the seam from its original function

Eoutside(ei ) =
∫

1

0

|B(ei (γ ), p) − B(ei (γ ), p0)|2 dγ .

Summing all edges, Eoutside(p) = 1

L
∑
ei ∈silhouettes leE∇out (ei ). We

do not discretize these energy terms; we analytically integrate them.

The derivation is similar to that of D and results in a quadratic

energy in p.

Smoothness. For smoothness, we introduce an energy term that

measures the integratedC1
discontinuity across seams. Namely, the

directional derivative of B perpendicular to each seam edge (towards

the interior) should have opposite sign:

EC1 (e1, e2) =
∫

1

0

��∇u,vB(e1(γ ), p) · e⊥
1

∥e1∥

+ ∇u,vB(e2(γ ), p) ·
e⊥
2

∥e2∥

��2
dγ .

Summing all edges, EC1 (p) = 1

L
∑
e1,e2∈seams

leEC1 (e1, e2). As be-
fore, we analytically integrate EC1 to obtain a quadratic energy in

p.
Finally, to account for any remaining degrees of freedom—in

particular, non-seam uv silhouette edges trivially satisfy or are

underconstrained by D = 0, Echange, Espatial, and EC1—we add a

Dirichlet energy involving only the outside texels of bilinear cells
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original (10242) 1024x1024 512x512 256x256 128x128 64x64 32x32 16x16 8x8

Fig. 6. Decreasing the resolution of a color texture while computing a seam-free texture. The original texture, whose seam runs underneath the handle, is

1024 × 1024. This example uses local smoothness parameters (see text for details). As the texture size decreases, the area of influence increases. The change

eventually bleeds into the teapot’s lid, a disconnected component. A seam never appears, though at 8 × 8 resolution, the texture becomes virtually constant.

through which uv silhouette edges pass:

E∇out(p) = ∥∇outp∥2,

where ∇out is the discretized 2D gradient operator restricted to grid

edges involving the outside texels. (Texels that do not belong to

bilinear cells containing the uv mesh are left untouched by our

optimization.)

Optimization. All of our energy terms are quadratic energies in

the texels p. Our total energy is:

E(p) =

(deviation)wchangeEchange(p) +w∇inE∇in(p)

(smoothness) +wC1EC1 (p) +w∇outE∇out(p)

(optional) +woutsideEoutside(p) +wlerpElerp(p)

subject to

Mp = 0

We impose the null space constraint via the penalty method by

adding wseampTMp. This allows complex functions that have ef-

fectively zero energy. All examples use wseam = 10
10
, except the

Lemon which used wseam = 10
6
due to numerical issues. We ob-

tain the global minimum of the resulting quadratic expression by

solving the associated sparse linear system of equations. Multiple

signal channels are optimized simultaneously as the system matri-

ces are identical. We use the following weights in our experiments:

wchange = 10
4
; w∇in = w∇out = 10

0
; wC1 = wlerp = woutside = 10

2
.

If the user requests non-local (global) continuity across the seam,

we decrease wchange to 10
2
. This decreases the importance of the

primary domain in favor of the gradient domain.

Experiments. In Figure 4, we erase seams from color, normal,
3

geometry, and ambient occlusion maps. The images are also avail-

able in the supplemental materials for inspection. (Seam erasure

was used for all examples in the paper.) While seams are thin by

nature, they are visually jarring artifacts on an otherwise smoothly

varying surface. When textures are created in the parametric do-

main, global discontinuities are often unintentionally introduced.

A comparison between our local and global parameter settings is

shown in Figure 5.

3
We use object-space rather than tangent-space normal maps in our experiments.

Tangent space transformation matrices differ across half-edges and would need to be

inserted into the definition of D , requiring numerical integration. However, there is no

standard definition of tangent space transformation matrices; disagreement between

the definition used by seam erasure and when rendering would reintroduce seam

discontinuities.

Before Iwanicki [2013]After

Fig. 7. Our algorithm erases seam mismatches without influence from

mismatching or undefined texels outside the parameterization mesh. Min-

imizing bilinear interpolation mismatch and the change in interior texels

results in an underconstrained system that cannot be solved. Minimizing

the change in exterior texels as well [Iwanicki 2013] results in undesirable

influence.

In Figures 6 and 17, we erase seams from progressively smaller

texture maps (color and weight maps); a seam never appears, though

the effect of seam erasure necessarily becomes more global and

eventually a constant function as each texel influences a larger

region. Skin weights textures (Section 8) as small as (16 × 16) are

sufficient for many deformations, resulting in much less data storage

than per-vertex weights.

Table 1 shows the running time and integrated seam deviation

Dtotal before and after our optimization. Seam deviation is always

decreased to approximately zero. Our implementation was written

in Python/SciPy. We used a large, sparse, linear system and a direct

solver to minimize our energy (SciPy’s LU-decomposition-based

spsolve()). Runtime numbers were obtained on a 2.6 GHz Intel

Core i7-4720HQ CPU with 16GB of RAM. Optimization takes on the

order of 30 seconds for a small example to 7 minutes for a 2k texture.

This is a one-time preprocess, so it is not performance critical.

Figure 7 illustrates the effectiveness of our constrained optimiza-

tion versus a simpler energy: minimizing the squared seam deviation

at sample points and squared change in all texels [Iwanicki 2013].

Penalizing the change in texels outside the parameterization leads

to unwanted influence from unreliable information. Not penalizing

the change in outside texels leads to an underconstrained system.

Iwanicki’s approach erases seams when there are reasonable values

outside the parameterization and only a minor touch-up is needed.

In contrast, our approach can handle examples requiring global

texture changes. Our optimization directly minimizes the analytic

differences across seams, and chooses a solution from its numerical

null space. Our cross-seam smoothness terms produce a properly

determined system with pleasing results.
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We experimented with a priori lexicographic multiobject opti-

mization, in which less important terms (according to the weightsw)

are minimized subject to the constraint that more important terms

achieve a best possible solution. We tried the approaches in de Lasa

and Hertzmann [2009] and Kanoun et al. [2009] but found them to

be numerically unstable. We were able to solve as a sequence of

quadratically constrained quadratic programming problem using

Mosek, but the quality of the solution was only marginally better

than our weighted sum at a much higher computational cost.

5 DECIMATION

e1 e2

f1 f2

Fig. 8. Seam half-edges

e1, e2 and f1, f2 are

collinear, but merging

e1f1 and e2f2 would cause

the stripe texture to be

misaligned across the

seam.

Our edge collapse conditions ensure

that mesh decimation does not in-

troduce new seams. Mesh decima-

tion seeks to decrease the complex-

ity of a mesh in the least obtru-

sive way possible. Decimation algo-

rithms allow one to create simpler

meshes for level-of-detail hierarchies.

Approaches have been proposed for

meshes with accompanying uv pa-

rameterizations [Cohen et al. 1998;

Garland and Heckbert 1998; Hoppe

1999; Sander et al. 2002, 2001]. This

allows decimated meshes to share

the same surface signals stored effi-

ciently in the parametric domain as

images. For example, detailed surface

colors, normals, or 3D positions can be stored as images. A bijective

parameterization allows signal reuse. However, bijectivity can be

destroyed by naive seam-oblivious decimation. We focus on edge-

collapses, the fundamental operation in most popular triangle mesh

decimation algorithms. The operation collapses an edge, destroying

its triangle flaps and merging its vertex endpoints into a single new

vertex. The edge-collapse rules proposed by existing approaches for

decimating seams (and uv silhouettes in general) have either been

too strict (leave seams untouched) or too permissive (preserve only

the uv shape of seams or, worse, don’t); see Figure 1. Leaving seams

untouched prevents mesh complexity from being allocated where it

will be more beneficial. Allowing seams to collapse freely introduces

seam discontinuities, including sampling undefined texels. Preserv-

ing only the uv shape of seams can still introduce discontinuities

due to mismatched sampling (Figure 8).

In this section, we describe the space of seam-free edge collapses.

We take as given that seam-free textures exist for which Dtotal = 0

(e.g. the output of Section 4). We describe criteria that must be satis-

fied to be able to collapse an edge without introducing a seam, and

conditions that the new vertex’suv parametric coordinates must sat-

isfy. Our conditions preserve the topology and shape of seams, pre-

venting edge-collapses from “cutting corners,” effectively omitting

parts of the input signal (edge-collapses near convex boundaries)

or spilling into unspecified regions not in the original surface’s tex-

ture. Our conditions also prevent discontinuities due to mismatched

sampling along the half-edges of a seam edge (Figure 8).

e1

(a)

e1

d1

f1

(b)
e2

d2

f2 (c)

e1

d1

f1

f2

d2 e2

Fig. 9. Collapsible edge conditions. In all examples, e is the edge collapse un-
der consideration. According to our criteria and conditions, green endpoints

are free to move, while red endpoints must remain fixed. In (a), collapsing

e would violate the Link Conditions. In (b), e and f are unifiable because

they are collinear and satisfy the condition:
∥e1 ∥
∥f1 ∥
=

∥e2 ∥
∥f2 ∥

. However, e and

d cannot be unified because they are not collinear. Therefore, when col-

lapsing e , the only satisfying new vertex placement in uv is for the green

endpoints to move to the location of the red ones; the xyz placements will

be determined by constrained minimization of the quadric metric. In (c),

e, f and e, d are unifiable, so both endpoints of e1 and e2 are free to move.

The new vertex placement in uv and xyz will be determined by minimizing

the quadric metric subject to collinearity constraints.

5.1 Criteria and Conditions for Collapsible Edges

Link Conditions: In any manifold-preserving mesh decimation

algorithm, for an edge to be collapsible, its surface mesh must satisfy

the link conditions [Dey et al. 1999] to guarantee that the resulting

surface mesh is still manifold. In our setting, we additionally check

that the parametric mesh satisfies the link conditions. This can occur

if the edge to be collapsed is not a uv silhouette edge yet connects

two uv silhouette vertices; such an edge is not collapsible.

One uv silhouette endpoint: If an edge has only one vertex on

a uv silhouette, the collapsed edge must take the silhouette vertex’s

uv to preserve the shape of the silhouette.

Seam edges: For a seam edge to be collapsible, we must be able

to unify both of itsuv half-edges e1, e2 with the half-edges of at least
one of its neighbors along the seam into a uniformly parameterized

line. This is a stronger condition than uv collinearity, because it also

requires that the ratio of uv edge lengths are the same:
∥e1 ∥
∥f1 ∥
=

∥e2 ∥
∥f2 ∥

,

where f1, f2 are the half-edges of the adjacent seam edge. Collinear-

ity preserves the shape of the seam. Matching uv edge lengths

ensures that the collinear lines formed by e1 f1 and e2 f2 are simi-

larly parameterized, so that merging them and reparameterizing

them linearly results in the same bilinear interpolated signal recon-

struction as before (Figure 8). Formally, the seam discontinuity D
(Equation 2) after unifying the edges must remain identically zero.

The edge length ratio condition arises from the change of variables

of the integral.

There may be zero, one, or two adjacent unifiable seams edges.

A seam edge with no such satisfactory adjacent seams cannot be

collapsed (Figure 9).

If the seam edge e withuv half-edges e1, e2 is adjacent to two unifi-
able edgesd1,d2 and f1, f2 (on either side), we imposeuv collinearity

and matching length ratios as linear equality and inequality con-

straints. Let d1(0)e1(0)e1(1)f1(1) be the sequence of uv endpoints

for the half-edge sequence d1e1 f1, and let d2(0)e2(0)e2(1)f2(1) be
the analogous sequence for d2e2 f2. We express collinearity for the
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new vertex’s uv positions w1,w2 on either side of the seam as:

w1 − d1(0) =
(w1 − d1(0)) · (f1(1) − d1(0))

∥f1(1) − d1(0)∥2
(f1(1) − d1(0))

0 ≤
(w1 − d1(0)) · (f1(1) − d1(0))

∥f1(1) − d1(0)∥2
≤ 1

and analogously forw2. We express the edge length ratio constraint

as

(w1 − d1(0)) · (f1(1) − d1(0))
∥f1(1) − d1(0)∥2

=
(w2 − d2(0)) · (f2(1) − d2(0))

∥f2(1) − d2(0)∥2

If the seam edge is only adjacent to one unifiable edge—without

loss of generality d1,d2—then the only solution to the constraints

is for the unifiable edges d1e1 and d2e2 to merge by collapsing w1

and w2 to e1(1) and e2(1), respectively. This is a straightforward
equality constraint.

For a non-seam uv silhouette edge, the collinearity constraints

are necessary but not the length ratio. Any re-parameterization of

the line is seam-free, so long as the shape is preserved.

5.2 Algorithm

We implement our criteria and conditions as an extension to Gar-

land and Heckbert [1998]’sn-dimensional follow-up to their seminal

QSlim method [Garland and Heckbert 1997]. (Our extension could

be added to any edge-collapsing approach, such as Hoppe [1999].)

These approaches extend the greedy edge-collapsing approach of

QSlim to initialize each face’s decimation metric with one that con-

siders all attributes of the face.

The basic idea of Qslim innD is to use a point-to-planemetric for a

plane embedded in a higher-dimensional space (e.g. x ,y, z,u,v, . . .).
In QSlim or any metric-based edge-collapse algorithm, the metric

is stored first on faces, then averaged onto vertices, and finally

onto edges. The cost of collapse and the nD value of the resulting

vertex are determined by the nD point minimizing the metric. The

algorithm repeatedly collapses the lowest cost edge until the mesh

is sufficiently decimated. After each collapse, nearby edges’ costs

must be recomputed. The cost of an un-collapsible edge is ∞.

For a parameterized mesh, the surface mesh and texture mesh

have corresponding faces, but the faces will not, in general, share the

same edge or vertex connectivity. Let the input model be represented

as a list of n3 3D surface vertices V , a list of n2 2D parametric

(uv) vertices U , and two lists ofm triangles FV and FU , which are

ordered triplets of indices into V and U , respectively. This matches

the way in which surface and texture meshes are stored in an OBJ-

like format. We assume all edges have at most two incident faces,

though extension to non-manifold inputs does not seem out of the

question. We also assume that the surface mesh is closed; for open

meshes, we add a new virtual vertex (with 3D position and 2D

texture coordinate at infinity) and triangles stitching this virtual

vertex to all boundaries edges.

Since the vertex sets V and U are not in correspondence, it is

useful to define the set of unique vertices Z . Vertices in Z are in

Z2 and refer indirectly to V andU . In the worst case, every corner

of every triangle is a unique vertex in Z ; then |Z | = 3m. In this

way, we may re-interpret both FV and FU as a single face list F
indexing Z ; a vertex in Z specifies where in V or U to look for

3D surface coordinates or 2D texture coordinates. Similarly, half-

edges reference vertices in Z . With these definitions in hand, a seam

edge is one whose two half-edges reference different vertices in Z .
We store nD metrics with vertices in Z rather than V . Each face

contributes its metric to its three corners in Z . When an edge to be

collapsed is a seam edge, each halfedge contains two Z vertices, all

of which have nD metrics. We sum the metrics of each halfedge’s

two vertices separately and associate each metric with the two new

Z “half-vertices” that result from the collapse. Note that we never

explicitly create Z . We create Z vertices on-the-fly as pairs of vertex

and texture coordinate indices. We look up the nDmetrics via a hash

table whose keys are Z vertices. This is similar to Hoppe [1999]’s

wedge data structure to store the distinct attributes a vertex may

have in each of its incident faces, but simpler to create and maintain

for our purposes.

To find the 3D position and UV coordinates of the two Z half-

vertices, we build a 2nD metric (each of the two nD metrics is a

block along the diagonal) involving two copies of every dimension,

one for each half-vertex: x1,y1, z1,u1,v1,x2,y2, z2,u2,v2. We solve

this metric subject to the constraints that x1 = x2,y1 = y2, z1 = z2,
since the 3D positions must match, and the uv silhouette-related

constraints defined above (w1 = (u1,v1) and w2 = (u2,v2). These
are linear equality and inequality constraints imposed on the mini-

mization of a quadric metric; we solve it using an implementation

of the quadratic programming solver by Goldfarb and Idnani [1983].

6 SEAM STRAIGHTENING

In Section 5, we show that only seam edges along straight lines with

matching edge-length ratios can be collapsed if we want to share

texture-domain signals between the high-resolution and decimated

meshes. Seam parameterizations of most models do not often meet

these criteria and consequently decimation is hindered (Figure 12).

We propose preprocessing a given model’s uv parameterization to

straighten seam edges and therefore increase the effectiveness of

our seam-aware mesh decimation. This step can be interpreted as

a one-time remapping of a model’s parameterization and texture-

domain signals so that here-on-out, different mesh resolutions can

share data.

The input to this subroutine is a model composed of a surface

mesh (only the connectivity FV is needed) and a parameterization

mesh (FU andU ) as described in Section 5, a list of signals (e.g., color

textures, normal maps, geometry image, weight maps, etc.) defined

on the parametric domain, and a tolerance parameter controlling

the amount of straightening to perform. We assume that the input

model’s surface and parametrization meshes are edge-manifold, but

they may contain boundaries.

The output is a displacement of the parametrization mesh’s vertex

coordinates and a corresponding warp of each of the input signals

on the parametric domain (Figure 10).

While we cannot make a strong guarantee that the output param-

eterization will be free of foldovers (a difficult problem in general

[Rabinovich et al. 2017]), we do take steps to prevent unsatisfiable

constraints. We observe in practice that the boundary coarsening

for reasonable tolerances does not cause cross-overs. Preventing
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Input parameterization 
mesh boundaries and signal

Straightened boundaries
and warped signal

Fig. 10. We identify “straightenable” components of the parameterization

meshes boundary edges (colored uniquely), coarsen these as piecewise-linear

curves up to a given tolerance, and warp the interior.

foldovers during the internal warping is more challenging. We pro-

vide a simple heuristic, though more complex methods could be

substituted, e.g., [Rabinovich et al. 2017].

Protected parametrization vertices. Protected parameterization

vertices demarcate the boundary of straightenable edge-chain com-

ponents and will not be moved.

A parameterization vertex will be protected if any of the following

are true.

(1) Its corresponding surface mesh vertex is incident on any

number of seam edges except zero or two. Vertices with zero

incident seam edges are of no concern, and vertices with two

incident seam edges have been “cut cleanly” and need not

protection.

(2) Its corresponding surface mesh vertex is incident on at least

one seam edge and a surface mesh boundary edge. We would

like to straighten boundaries along with seams, but vertices

joining seams and boundaries must not be moved.

(3) It is incident on an “ear” face of the parameterization mesh (a

face with exactly two surface boundary or seam half-edges).

Ears are problematic for the subsequent internal warping and

protected as a preventative measure.

(4) It shares a corresponding surface mesh vertex with a pro-

tected parameterization vertex. We will straighten both sides

of each seam simultaneously. To ensure compatibility, we

propagate protection via the surface mesh vertex correspon-

dence.

Edge component straightening. Next we run connected compo-

nent analysis boundary and seam half-edges of the parameteriza-

tion mesh, where two half-edges are adjacent if they share a non-

protected vertex. Due to the protection process, each component

will contain either all seam or all surface boundary half-edges. If

component A1 contains seam half-edges d1, e1, f1, . . ., then another

component A2 of equal size will contain all copies d2, e2, f2, . . .. We

call A2 the “copy” of component A1. We then process components

along with their copies in turn.

a

b

c
d

e

a

b

c
d

e

a b c d e

a b c d e

“4D” non-straight seam

“4D” straightened seam

Fig. 11. Two halves of a seam with original vertices {a, b, c, d, e } and

{a′, b′, c′, d ′, e′ } are illustrated as black chains with mismatching edge-

length ratios (left and top). We straighten the seam, treating it as a 4D curve

(illustrated here as a black 2D curve reduced to a red curve). The vertices

are repositioned along the curve in 4D, and these define the parametric

vertex positions along the original seams (right and bottom). Because their

parametrizations agree, edge-length ratios now also agree.

If the component contains boundary edges, then we straighten

the chain or closed loop of edges by treating it as a 2D piecewise-

linear curve. We coarsen this curve to the user provided tolerance

using the iterative Ramer-Douglas-Peucker method [Douglas and

Peucker 1973; Ramer 1972]. We reposition vertices removed during

coarsening according to their position along the coarsened curve,

parameterizing the segment between the previous and next surviv-

ing vertex according to normalized original edge-length. We ensure

that closed boundary loops do not coarsen to less than three edges.

Otherwise the component contains seam half-edges, and we

coarsen using Ramer-Douglas-Peucker in four dimensions; we con-

catenate the coordinates from each copy. We reparameterize the

vertices of the non-straight 4D curve onto the straightened 4D curve

according to arc-length. Using this parameterization to move each

side of the seam, we guarantee that edge-length ratios match (see

illustration in Figure 11).

Warping the interior. If we only move seam and boundary vertices

on parameterization mesh, there will be high distortion and many

foldovers of the attached faces. To alleviate this, we perform planar

shape morphing. We experimented with a variety of ready-made

options.

A simple method is to map interior vertices according to a dis-

crete harmonic displacement field (see, e.g., [Joshi et al. 2007]). For

small changes in the boundary this is sufficient. However, for large

changes, especially where convex regions becoming concave or vice-

versa, this simple linear mapping creates many inverted triangles.

To accommodate large changes, we compose harmonic mappings

along small linear steps (similar in spirit to [Schneider et al. 2013]

and inspired by [Xu et al. 2011]).

Input parameterizations often contain exactly or nearly degen-

erate triangles that cause numerical instabilities when conducting

discrete harmonic mappings. We observe that texture meshes are

often much messier than surface meshes. Even more than surface

meshes, they often are not intended for computation. In the presence

of degeneracies, we construct a constrained Delaunay triangulation
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Fig. 12. The effect of straightening tolerance on decimation quality. The

accumulated metric cost of edge collapses to decimate a model (stick)

decreases as more straightening is performed. Each curve represents a

different straightening tolerance. (The 0.1 curve is almost entirely covered

by the 0.01 curve.) Straightening increases the number of seam edges that

can be collapsed, allowing for a more effective use of the mesh resolution

and therefore a lower total error.

of the entire parametric domain (i.e., unit square) treating input

parametrization mesh vertices as point constraints and boundary

edges as segment constraints. Then we conduct the composite har-

monic mapping on this mesh, bringing along the interior vertices as

part of the ambient mesh’s triangulation. This part of our pipeline

will immediately benefit from future improvements in bijective

planar mapping algorithms.

Whether using an ambient mesh or not, ears incident on the

morphing vertices could be forced to flip as their behavior is fully

determined by the morphing constraints. Hence, we preemptively

protect all ears. Finally we simply render new signals using the new

parametrization coordinates, with the old coordinates as texture

coordinates, into each input signal.

In our experiments, we always use tolerance= 0.01when straight-

ening. Beyond this value, few additional seam edges become col-

lapsible (Figure 12).

7 EVALUATION

Our seam erasure, seam straightening, and seam decimation can

be used to create seam-free signals shared by all decimation levels.

Importantly, they can be used for crack-free tessellation on the GPU

with the standard rendering pipeline. This enables the straightfor-

ward application of geometry images for dynamic level-of-detail,

with no special data structures to avoid seam artifacts. Perfect vector-

valued displacement maps (storing xyz offsets) can also be easily

created and used. We also explore skin weight textures for the first

time (Section 8).

Decimation and Straightening. Figure 13 and 20 show a variety

of models decimated using our algorithm. These decimated models

share the same parameterization as the original mesh and so all

levels of detail can still be rendered, seam-free, with the original

color and normal map (Figure 13) or by baking the original mesh’s

normal map (Figure 20). Furthermore, we can rasterize the original

model’s positions into a geometry image (Figure 13) or vector-valued

Before
After 

Straightening After Decimation

Example # faces
# seam 
edges

# un-
collapsible 

edges

# un-
collapsible 

edges # faces
# seam 
edges

# un-
collapsible 

edges
Lemon 50368 196 0 - 168 58 58
Chimp    52352 1507 805 171 2594 901 894
Cow      23328 1929 1923 - 3494 1929 1929
Hercules 79691 626 626 290 3293 470 469
Animal   39040 419 369 17 1166 200 194
Wolf 10018 390 374 173 894 290 282
Boy 80000 2281 1462 - 3994 1878 1877

Table 2. Information about the effects of our straightening (Section 6) and

decimation (Section 5) on various models. Straightening increases the num-

ber of collapsible seam edges. This allows for greater flexibility, and therefore

higher quality, decimations (e.g. Figure 1).

displacement map (Figure 20), erase seams, and obtain obtain crack-

free dynamic level-of-detail with the tessellation shader on the

GPU. See Table 2 for information about the decimation of these

models. It is trivial to create a vector-valued displacement map via

the shared parameterization by subtracting the un-decimated and

decimated mesh’s geometry images. Vector-valued displacement

maps avoid foldover artifacts that result from ray casting in the

normal direction and artifacts that arise from closest point sampling

[Nießner et al. 2016]. The shared parametric domain provides a

natural correspondence.

Rendering Performance. Figure 14 shows the rendering perfor-

mance of static and dynamic level of detail. Rendering performance

was measured on a 2.30 GHz Intel Xeon E5-2630 CPU with 32 GB

of RAM and a GeForce GTX 1080 GPU. More models’ performance

plots can be seen in the supplemental materials. Our decimation

generates multiple meshes that can be rendered in the typical way,

with 3D positions as vertex attributes. Because our decimations

share a seam-free parametric domain, however, we can submit a

decimated mesh’s uv coordinates as the sole vertex attributes and

load all information from textures (here, positions from a geometry

image), without cracks. With a tessellation shader, this extends to

choosing the level-of-detail dynamically on the GPU. In this plot,

we choose a variety of uniform tessellation levels. All our exam-

ples render in real time on a 2012 MacBook Air 2GHz Intel Core i7

with 8GB RAM and an Intel HD Graphics 4000 GPU. Videos were

recorded on a 2015 13” MacBook Pro with a 2.9 GHz Intel Core i5

processor with 16 GB of RAM and an Intel Iris Graphics 6100 GPU.

We store geometric surface attributes as floating point textures

for greater fidelity. For example, if stored in 8-bit images, geometry

images or displacements maps would lose fidelity when quantized

and normalized to lie within [0, 255]; weight maps (Section 8) can be

stored as 8-bit imageswithout loss of fidelity, butmust be normalized

on-the-fly.

8 WEIGHT MAPS

Subspace methods describe the deformation of any point on a sur-

face as a function of small number of degrees of freedom. For lin-

ear subspaces, this function is a simple weighted sum of subspace

functions defined on the surface, i.e. subspace signals. Linear blend
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Original Mildly decimated Heavily decimated
Heavily decimated,
tessellation level 2

Heavily decimated,
tessellation level 4

Fig. 13. Decimating a model while reusing its color and normal map without seam artifacts. Tessellating the model on the GPU using a geometry image for

crack-free dynamic level of detail.

skinning—perhaps the most well known linear subspace method de-

fines subspace signals as bone weights, and its subspace parameters

are the bones’ transformations. Modern applications of linear blend

skinning encompass not just skeletons, but also point, region, and

cage handles [Jacobson et al. 2014].

As the deformation is pointwise, we also store skinning weights

in the parametric domain as textures, decoupling them from mesh

resolution. State-of-the-art automatic weighting algorithms employ

variational principles and the finite-element method to approximate

smooth weight functions (e.g., [Baran and Popović 2007; Jacobson

et al. 2011; Joshi et al. 2007]). In classic linear blend skinning, com-

puting these functions on a more accurate discretization is mostly

for naught if only values on the original mesh are retained. With

weight maps, we compute more accurate automatic weights and

efficiently store them in floating-point images. We erase the seams

with Elerp enabled, since the weight signal was initially computed

on a high resolution mesh. When rendering, we tile all weight maps

into one or two floating point textures.

Adaptive Subdivision. Because deforming models may require

additional detail locally, we use a simply adaptive tessellation level

scheme when rendering them. The GPU’s tessellation control shader

allows one to specify, for each triangle, separate tessellation levels

for each edge and the interior. To prevent cracks, an edge should

be given the same tessellation level from both incident triangles.

We evaluate, at each edge midpoint, the length-weighted deviation

between the exact deformation and the piecewise-linear approxi-

mation (Figure 15, red arrow):

ei j =∥vi − vj ∥

× ∥deform(lerp(vi , vj ,
1

2

)) − lerp(deform(vi ), deform(vj ),
1

2

)∥
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3D Positions

Fig. 14. Rendering performance. We plot rendering scenarios as points with

coordinates given by their Hausdorff error and milliseconds per frame. Ren-

dering scenarios, classified by color, are degree of decimation, whether using

the geometry image, and uniform tessellation level (as applicable). Hausdorff

error is measured as the distance to the undecimated mesh as a fraction

of bounding box diagonal. (Note that even without decimation, using a

geometry image introduces error due to rasterization; hence the geometry

image scenarios are vertically offset.) See the supplemental materials for

additional models’ performance plots.

Undeformed

High resolution weights

Low resolution weights

midpoint

midpoint

deformdeformdeform

Fig. 15. An edge between vi and vj stays straight when per-vertex weights

are used, but can take on any shape with weight maps. Our adaptive subdi-

vision evaluates the distance indicated with a red arrow.

where deform(v) looks up the position from the geometry image at

v’s texture coordinate or adds the displacement vector and then, if us-

ing weight textures, applies the skinning deformation. This amounts

to a 0-th order numerical approximation of the integrated length-

weighted deviation along the edge (Figure 15, shaded region): ∥vi −
vj ∥

∫
1

0
∥deform(lerp(vi , vj , t)) − lerp(deform(vi ), deform(vj ), t)∥dt .

We use quality · ei j as the tessellation level for each edge and

quality ·
ei j+ejk+eki

3
as the tessellation level for each face, where

quality is a user-determined parameter that we scale by the inverse

distance of the object to the camera.

Experiments. Treating skinning weight signals as a potentially

much higher or lower resolution signal than the base surface mesh

has important ramifications.

Analogous to Z-brush-style sculpting interfaces, riggers and

animators can paint weights directly onto any point of the surface,

ignoring its geometric representation or particular vertex placement.

In Figure 16, we sketch a proof-of-concept demo where an animator

3D paints high-resolution weights. Animators and modelers have

comfortable tool suites for painting high-resolution texture colors

and displacement maps either in the texture domain or directly on

the surface (e.g. ZBrush). Current weight painting tools (e.g. in

Fig. 16. Just like painting texture colors, an animator can now 3D paint

high-resolution skinning weights and see their effect immediately. In this

example the weights for the bony skull of the animal are painted to make it

move rigidly with the rest of the head. Please see the supplemental materials

for a video of this example.

1024x1024 64x64 16x16 4x4

Fig. 17. High resolution weight textures can be shrunk to extremely small

sizes while maintaining virtually all rendering fidelity. Even a weight texture

as small as 16 × 16 captures the character’s movement. At 4×4 resolution,

the space of seam-free textures is insufficient and the weight maps become

nearly constant.

Maya) are limited by the resolution of the mesh. More expressive

weights require subdivision of themesh geometry (and interpolation

of other attributes) just to create vertex degrees of freedom for

weights.

In Figure 17, we see that weight maps as small as 16 × 16 are

sufficient for many animations.

In Figure 20, we show linear blend skin deformations with adap-

tive tessellation. Decimation concentrates on areas with low Gauss-

ian curvature, often producing long, skinny triangles. Despite this,

weight maps and displacement maps restore the shape and deforma-

bility of the original, detailed model.

In Figure 18, we consider the canonical bending and twisting tests

(e.g., [Kavan and Sorkine 2012]). Per-vertex skinning does not have

enough degrees of freedom to create an interesting bend or twist.

Skinning with weight textures reproduces the expected ground-

truth pointwise skinning behavior (e.g. linear blend skinning’s candy

wrapper effect). Additional detail is added only as needed (zoom to

see wireframe). To further show the agnosticity of our approach to

skinning algorithms, in Figure 19 we reproduce a classic result from

Sederberg et al. [1986] using Free-Form Deformation weights.

Figure 21 separates the effects of high resolution skinning weights

from displacement mapping. A coarse, flat surface is augmented

with a bumpy displacement map. With our pipeline, the surface

bends as expected. With per-vertex skin weights, the mesh vertices

are first deformed by skinning and then the tessellation shader adds

applies the displacement map offsets after transforming them via

linear blend skinning applied to the tangent space.

9 CONCLUSION

Seams, long an irritant of computer graphics, play an important role

in the creation and reuse of surface signals. Without consideration

of seams, signals cannot be stored or retrieved properly and levels-

of-detail cannot make use of a shared parametric domain. They are

a tax on artists, who must carefully place them to minimize the

discontinuity artifacts. We have shown how to erase seams from
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Fig. 18. Per-vertex skinning on a 24-vertex box suffers severe artifacts when

bending or twisting under linear blend skinning (LBS) [Magnenat-Thalmann

et al. 1988]) and DualQuaternion Skinning (DQS) [Kavan et al. 2008].Weight

maps reproduce expected ground-truth pointwise skinning.

Fig. 19. Coca-Cola Classic. Our dynamic refinement approach can be used

for Free-Form Deformation [Sederberg and Parry 1986].

DecimatedOriginal DeformedTessellated

Fig. 20. Decimating a detailed input mesh into a coarse mesh and accompa-

nying vector-valued displacement map, normal map, and skin weight map.

These allow our the coarse model to reproduce the shape and deformability

of the detailed mesh.

Undeformed High resolution 
weights

Per-vertex 
weights

Fig. 21. A displacement map applied to a flat square mesh, original triangles

indicated by color. Using high resolution weights, the expected smooth

deformation is achieved. With per-vertex weights, the coarse base surface

cannot smoothly deform.

any existing mesh and texture and how to correctly consider them

during decimation. Our approach places no explicit rectilinear or

symmetry constraints on the shape of seams or constraints on sig-

nals’ values. As a result, we are able to decouple surface signals,

geometric and otherwise, frommesh resolution. This frees designers

from worrying about discretization, and implementors from wor-

rying about seam artifacts. Our approach naturally supports mip

maps (and anisotropic filtering via rip maps) by optimizing each

downsampled image independently. Mipmapping maintains seam-

lessness. It continuously blends continuous functions. Our approach

has broad applicability, requiring minimal changes to existing work-

flows and no changes to the standard rendering pipeline. We expect

our approach to be widely adopted, as it imposes no runtime costs

or parameterization requirements. We hope that eliminating cracks

will lead to widespread use of GPU tessellation shaders. Finally, we

believe that our approach may provide an expanded set of desiderata

for parameterization.

Limitations and Future Work. Seam erasure is limited by the res-

olution of the texture. Small textures cause more “locking” where

the texture becomes constant. Seam erasure will also produce un-

desirable results when the parametrization mesh seams cross each

other or come within one texel of each other; distant seams then

become constrained to the same value. Closely packed structures in

a parameterization, like fingers, can pose a problem for geometry

images. A given resolution may be fine for a color texture, since all

fingers have similar colors, but not for a geometry image, which

must distinguish the fingers. Seam erasure, to eliminate cracks, may

merge them.

In the future we would like to explore additional adaptive sub-

division criteria for the tessellation shader. For example, it may be

profitable to encode the potential tessellation gain due to the geome-

try, displacement, or weight maps of an edge or face. We also believe

that the creation of vector-valued displacement maps and geome-

try images would benefit from an optimization that minimizes the

bilinear reconstruction error of the signal. To correctly transform

normals while linear blend skinning, in general, weight gradients
are needed [Tarini et al. 2014]. The inverse transpose is often used in

practice. In the future we will explore computing weight gradients

on the fly; their seam-free computation may require an additional

subspace constraint in our texture seam optimization. Finally, we

also plan to explore applications of our optimization to volumetric

textures (trilinear interpolation).
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